Kernel Methods for Chemical Compounds: From Classification to Design
نویسندگان
چکیده
In this paper, we briefly review kernel methods for analysis of chemical compounds with focusing on the authors’ works. We begin with a brief review of existing kernel functions that are used for classification of chemical compounds and prediction of their activities. Then, we focus on the pre-image problem for chemical compounds, which is to infer a chemical structure that is mapped to a given feature vector, and has a potential application to design of novel chemical compounds. In particular, we consider the pre-image problem for feature vectors consisting of frequencies of labeled paths of length at most K. We present several time complexity results that include: NP-hardness result for a general case, polynomial time algorithm for tree structured compounds with fixed K, and polynomial time algorithm for K = 1 based on graph detachment. Then we review practical algorithms for the pre-image problem, which are based on enumeration of chemical structures satisfying given constraints. We also briefly review related results which include efficient enumeration of stereoisomers of tree-like chemical compounds and efficient enumeration of outerplanar graphs. key words: chemoinformatics, kernel method, pre-image, dynamic programming, enumeration, graph detachment
منابع مشابه
Chemical Compounds with Path Frequency Using Multi-Core Technology
Drug design is the approach of finding drugs by design using computational tools. When designing a new drug, the structure of the drug molecule can be modeled by classification of potential chemical compounds. Kernel Methods have been successfully used in classifying chemical compounds, within which the most popular one is Support Vector Machine (SVM). In order to classify the characteristics o...
متن کاملتشخیص سرطان پستان با استفاده از برآورد ناپارمتری چگالی احتمال مبتنی بر روشهای هستهای
Introduction: Breast cancer is the most common cancer in women. An accurate and reliable system for early diagnosis of benign or malignant tumors seems necessary. We can design new methods using the results of FNA and data mining and machine learning techniques for early diagnosis of breast cancer which able to detection of breast cancer with high accuracy. Materials and Methods: In this study,...
متن کاملChemical Compound Classification with Automatically Mined Structure Patterns
In this paper we propose new methods of chemical structure classification based on the integration of graph database mining from data mining and graph kernel functions from machine learning. In our method, we first identify a set of general graph patterns in chemical structure data. These patterns are then used to augment a graph kernel function that calculates the pairwise similarity between m...
متن کاملRemote Sensing and Land Use Extraction for Kernel Functions Analysis by Support Vector Machines with ASTER Multispectral Imagery
Land use is being considered as an element in determining land change studies, environmental planning and natural resource applications. The Earth’s surface Study by remote sensing has many benefits such as, continuous acquisition of data, broad regional coverage, cost effective data, map accurate data, and large archives of historical data. To study land use / cover, remote sensing as an effic...
متن کاملModeling Biological Activities of Chemical Compounds: Kernel Methods for Structure Activity Relationship
The function of enzymes as well as the function of proteins involved in regulatory pathways often implies interactions with small chemical compounds. To understand the function of these proteins as well as for applications such as predicting activity or adverse effects of potential drugs we try here to compute the similarity between chemical compounds using a new similarity function based on th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IEICE Transactions
دوره 94-D شماره
صفحات -
تاریخ انتشار 2011